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Abstract
Foxp3 is essential for T regulatory cell (Treg) function. Broad complex-Tramtrack-Bric-a-brac domain (BTB) and
Cap‘n’collar (CNC) homology 1, transcription factor 2 (BACH2) stabilizes Treg immune homeostasis in murine studies.
However, little is known regarding what role, if any, BACH2 may have in Foxp3 regulation in human-induced Treg (iTreg).
We examined Foxp3 expression and regulation comparing iTreg differentiated from umbilical cord blood (UCB) vs. adult
blood (AB) naive CD4+ T-cells. Foxp3 expression was higher in UCB vs. AB-derived iTreg, and was sustained during 21-
day expansion in vitro. The number of Foxp3+ iTreg generated from UCB vs. AB naive CD4+ T-cells was higher in iTreg
differentiation conditions. In addition, UCB iTreg were more potent in suppressing T-cell proliferation compared to AB
iTreg. Naive UCB CD4+ T-cells highly expressed BACH2 protein compared to AB. Putative transcriptional BACH2
binding sites were identified at the Foxp3 promoter, using BACH2 consensus sequence. Cross-linking chromatin
immunoprecipitation (ChIP) showed that BACH2 binds to the Foxp3 proximal promoter in UCB iTreg, but not AB iTreg.
BACH2 was transcriptionally active, as shRNA-mediated BACH2 knockdown resulted in reduction of Foxp3 gene
transcription in UCB CD4+ T-cells. In summary, BACH2 serves to stabilize robust Foxp3 expression in UCB CD4+ T-cell-
derived iTreg.

Introduction

Early clinical experience identifies third party allogeneic
natural or thymus T regulatory cells (nTreg or tTreg) to be
safe and effective in acute graft vs. host disease (aGVHD)
prophylaxis [1]. However, low numbers of tTreg in human
peripheral blood as well as the low proliferative potential of
tTreg remain significant challenges for broader clinical
applications [2, 3]. Inducible Treg (iTreg) can re-establish
tolerance in settings where tTreg are decreased or defective
[4, 5]. However, instability in the expression of Forkhead
box P3 (Foxp3) transcription factor, which is essential for
iTreg differentiation and function, poses a significant barrier
to iTreg clinical application to date [6, 7].

Foxp3 is a member of the forkhead/winged-helix family
of DNA binding transcription factors and is the master
regulator for the development and maintenance of reg-
ulatory T cells. Deletion or mutation of the Foxp3 gene in
either mice or humans results in severe autoimmune dis-
eases, which are attributable to Treg deficiency [8, 9].
Activated protein 1 (AP-1) [10], Nuclear factor of activated
T-cells 1 (NFAT1) [11], Nuclear factor-κB (NF-kB) [12],
Small mothers against decapentaplegic 2 (smad2) [12],
smad3 [11], and signal transducer and activator of tran-
scription 5 (STAT5) [13] all have been identified as reg-
ulators of Foxp3 expression. Despite these advances in
understanding these multiple Foxp3 transcription partners,
the regulation of Foxp3 expression in human CD4+ T-cells
remains not fully elucidated.

Broad complex-Tramtrack-Bric-a-brac domain (BTB)
and Cap‘n’collar (CNC) homology 1, basic leucine zipper
transcription factor 2 (BACH2) is a bZip protein that acts as
a transcriptional repressor or activator. Murine BACH2
deletion studies reveal that BACH2 promotes in vitro TGF-
β-induced Foxp3+ CD4+ iTreg generation by suppressing
differentiation into effector T cells [14, 15]. However, the
role of BACH2 in human TGF-β-induced Foxp3+ CD4+

iTreg differentiation has not been fully examined.
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To address this gap, studies summarized herein were
conducted to determine whether BACH2 has a role in
regulating Foxp3 expression in iTreg derived from human
naive CD4+ T-cells. We observed that naive umbilical cord
blood (UCB) CD4+ T-cells highly express BACH2 mRNA
and protein expression when compared to naive AB CD4+

T-cells. Knockdown of UCB naive CD4+ T-cells with
BACH2 shRNA resulted in significantly decreased Foxp3
mRNA and protein expression. Further, BACH2 shRNA-
treated UCB naive CD4+ T-cells exhibited reduced
expression of CTLA-4 known to be associated with Foxp3
expression [16]. Putative transcriptional BACH2 binding
sites were identified at the human Foxp3 promoter using
BACH2 consensus sequence. Cross-linking chromatin
immunoprecipitation (ChIP) demonstrated that BACH2
binds to the Foxp3 promoter in UCB Foxp3+ CD4+ iTreg,
but not in AB Foxp3+ CD4+ iTreg. BACH2 was noted to
be transcriptionally active, as significantly decreased Foxp3
gene transcription was measured in the human Foxp3
luciferase reporter (Luc) Jurkat recombinant cell line by
luciferase quantification after transduction with
BACH2 shRNA vs. scrambled shRNA.

Taken together, these observations of higher BACH2
expression in human UCB naive CD4+ T-cells and the
regulation of Foxp3 by BACH2 in UCB naive CD4+ T-cell-
derived iTreg provides further clarification for the under-
lying molecular mechanisms contributing to the reported
immune tolerance of UCB graft T-cells. UCB graft T-cells,
in contrast to adult donor mobilized peripheral blood and
bone marrow grafts, allows successful allogeneic trans-
plantation across ≥2 loci HLA disparity without required T
depletion, eliciting low GVHD incidence and severity while
maintaining strong graft vs. malignancy effects [17–20].
The regulation of Foxp3 by BACH2 may contribute
to the observed robust and sustained Foxp3 expression in
UCB iTreg in studies summarized herein, and may con-
tribute to the observed enhanced number and suppressive
function of these UCB naive CD4+ T-cell-derived iTreg
[21, 22].

Materials and methods

Naive CD4+ T-cell isolation and iTreg generation,
and expansion

Naive CD4+ T-cells were isolated by Miltenyi auto MACS
(Auburn, CA, USA) with sequential CD45ROneg and CD4+

selection per manufacturer’s instructions. The isolated naive
CD4+ T-cells were activated in vitro with CD2/3/28
monoclonal antibody-coated dynabeads (beads to cell ratio,
1:2; Miltenyi) with added IL-2 (100 U/ml, Miltenyi) and
with 5 ng/ml transforming growth factor-β (TGF-β;

Peprotech, Rocky Hill, NJ) in 48-well culture plates at 5 ×
105 cells per well. The culture medium in all experiments
consisted of X-VIVO 15 (Lonza, Walkersville, MD) with
10% heat-inactivated human serum albumin (Gemini Bio-
product, Sacramento, CA).

Western blot

Western blotting for UCB and AB naive CD4+ T-cells and
differentiated iTreg were performed following standard
techniques [23].

In vitro suppression assay

In vitro suppression assays were performed as previously
described [24]. CD25high FACS-sorted iTregs were used for
suppression assay. Responder naive CD4+ T-cells and
Mitomycin C-treated T-cell-depleted PBMC were prepared
from a healthy donor. Carboxyfluorescein succinimidyl
ester (CFSE)-labeled naive CD4+ T-cells were plated at a
1:1 ratio with Mitomycin C-treated T-depleted PBMC and
varying concentrations of day 4 AB and UCB iTreg.
Soluble anti-CD3 (2 μg/ml) (clone HIT3a, BD Bioscience)
mAb was added. CFSE dilution was examined by FACS.

FACS analysis

Stimulated cells were harvested and fixed after surface
staining and permeabilized with Fixation/Permeabilization
kit according to the manufacture’s protocol (Miltenyi).
Appropriate Ab were used for surface staining as described
in the Supplementary Information. FACS percentages were
multiplied by enumerated viable nucleated cells at each cell
harvest day to calculate absolute numbers of specified
iTreg populations during TGF-β induction and in vitro
expansion.

BACH2 shRNA knockdown in day 0 naive CD4+ T-
cells and day 4 iTreg

BACH2 knockdown experiments were performed by spi-
noculation transduction method as described [25]. Techni-
cal details are described in the Supplementary Information
files.

Identification of putative transcriptional BACH2
binding sites

The 2.5 Kb sequence centered on the −1 exon of human
Foxp3 was downloaded from NCBI at http://www.ncbi.
nlm.nih.gov/sites/entrez. The sequence was analyzed for
known putative transcription factor binding sites using Blast
(Basic Local Alignment Search Tool) at https://blast.ncbi.
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nlm.nih.gov/Blast.cgi. The Foxp3 proximal promoter was
examined for putative NFAT1 [NGGAAAHH] and AP-1
[TGAYTMMK] binding sites, with particular attention to
regions adjacent to the NFAT1 binding sites that may be
partial AP-1 sites not scored by the algorithm. These
regions were aligned manually and examined for similarity
to the known consensus sequence for BACH2 [TGAST-
CAY]. Only those sequences with 2 or fewer mismatches
exceeding 75% similarity to the BACH2 consensus site
were considered further.

Cross-linking ChIP assay

ChIP assays were performed according to the cell signaling
protocol (https://www.cellsignal.com/contents/resources/
protocols/resources-protocols), as previously described
[26]. UCB and AB naive CD4+ T-cells were stimulated
with TGF-β in conditions summarized above. After 4 days
of stimulation cells were examined by ChIP. Between 1.0 ×
107 and 1.5 × 107 cells were treated with 1% formaldehyde
to cross-link protein to DNA. Protein-DNA lysates were
mixed with 1:50 ratio of rabbit monoclonal BACH2 anti-
body (Cell Signaling, Boston, MA) then immune-
precipitated with protein A/G Agarose Beads (D3T3G,
Cell Signaling). After digestion of proteins by Proteinase K
treatment, DNA was purified by DNA isolation spin column
(Cell Signaling) and examined for the presence of the
Foxp3 promoter by RT-PCR.

Luciferase assay

The human Foxp3 luciferase reporter (Luc) Jurkat recom-
binant cell line was used (BPS Bioscience, San Diego, CA).
Overall, 1 × 106 cells were transduced by scrambled or
BACH2 shRNA. After 16 h, cells were stimulated with
CD2/3/28 monoclonal antibody-coated dynabeads with IL-
2 (100 U/ml) with 5 ng/ml TGF-β in 96-well culture plates
at 1 × 104 cells per well. Luciferase activities were measured
after 24 h using the ONE-stepTM luciferase assay system kit
(BPS Bioscience).

Statistical analysis

Statistical comparative analyses were performed using the
Student’s t-test (Prism 6 software-GraphPad, La Jolla, CA).
Data are presented as the mean ± standard deviation, SD. A
p value of < 0.05 was considered significant.

Results

Absolute number and Foxp3+ expression in iTreg
derived from UCB vs. AB naive CD4+ T cells

Initial experiments revealed that TGF-β-induced Foxp3
expression was 2.5-fold higher in iTreg derived from UCB
naive CD4+ T-cells as compared to AB naive CD4+ T-cells
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(86.8 ± 3.1 vs. 34.3 ± 4.2, n= 12; p < 0.001) (Fig. 1a). In
addition, the absolute number of Foxp3+ iTreg from UCB
vs. AB naive CD4+ T-cells at day 4 TGF-β induction was
fourfold higher (3.8 × 106 vs. 1.0 × 106) (Fig. 1a). Expan-
sion of Foxp3+ iTreg cells was notable for significantly
higher absolute numbers of Foxp3+ UCB iTreg compared
to AB iTreg at day 14 and 21 (Fig. 1b). Absolute number of
UCB iTreg expressing CD62L+ and CD45RA+ was sig-
nificantly higher during 21 day in vitro expansion (Fig. 1b;
Supplementary Figure S2).

Phenotypic and functional characterization of UCB
and AB iTreg

Further studies were performed to determine whether UCB
vs. AB iTreg may exhibit similar or differing suppressive
function and/or expression of surface molecules associated
with T-cell activation or suppression. Expressions of CD25
and CTLA-4 were significantly higher on UCB Foxp3+

iTreg compared to AB Foxp3+ iTreg (Fig. 2a). Next, sur-
face molecules associated with suppressive functions of
Treg were examined, including OX-40 and CD39; higher
expression was noted on UCB Foxp3+ iTreg vs. AB. In
contrast, the surface expression of checkpoint inhibitors and
other surface molecules associated with T-cell activation or
suppression including: PD-1, ICOS, LAG-3, TIM-3, NRP-
1, and TIGIT were similar or slightly diminished on UCB
Foxp3+ iTreg compared to AB (Fig. 2b). In addition, results
of suppression assay revealed that AB iTreg (CD25high

FACS-sorted iTreg cells) exerted significantly lower sup-
pressive function compared with UCB iTreg, with only
~60% suppression (60.6 ± 6.7) when mixed with responder
cells at a 1:1 ratio, and dropping to ~30% suppression (29.9
± 3.0) at 10:1 ratio (Fig. 2c). In contrast, UCB iTreg exerted
significantly enhanced suppressive function with ~90%
inhibition (89.9 ± 1.8) at a ratio of 1:1, and ~70% inhibition
(70.6 ± 1.9) at a ratio of 10:1 (Fig. 2c). Furthermore, UCB
iTregs showed enhance suppressive function in a limiting
dilution assay utilizing equivalent numbers of UCB and AB
Foxp3+ cells (Supplementary Figure S3). In summary, day
4 iTreg derived from UCB naive CD4+ T-cells demon-
strated higher CTLA-4, CD25, OX-40, CD39 expression
and suppressive function vs. AB with equivalent expression
of checkpoint inhibitors and other surface molecules asso-
ciated with T-cell activation or suppression.

Expression of BACH2 and NFAT1 in UCB naive CD4+

and Foxp3+ CD4+ T-cells

Given previous work pointing to a role for BACH2 in
murine Treg function [14], and the known association of
NFAT1 with Foxp3 function in human Treg [27], further
studies were conducted to examine the mRNA and protein

levels of these transcription factors in UCB and AB naive
CD4+ T-cells and iTreg. Expression of BACH2 mRNA was
noted to be significantly higher in UCB vs. AB naive CD4+

T-cells at baseline (day 0) and similar after 4 days (96 h)
induction in iTreg differentiation (Supplementary Fig-
ure S4). NFAT mRNA expression was slightly lower both
in UCB naive CD4+ at baseline and day 4 iTreg compared
to AB (Supplementary Figure S4). Similar to mRNA
measurements, protein levels of BACH2 in UCB naive CD4
+ T-cells were also noted to be significantly higher than AB
naive CD4+ T-cells at baseline (day 0) and NFAT1 protein
expression was lower in UCB naive CD4+ T-cells com-
pared to AB (Fig. 3a). In day 4 iTreg (with or without TGF-
β added), NFAT1 expression was similar in AB and UCB.
However, significantly higher BACH2 protein levels were
noted in day 4 iTreg derived from UCB naive CD4+ T-cells
vs. AB (Fig. 3b) regardless of addition of TGF-β in iTreg
differentiation conditions. Taken together, BACH2 mRNA
and protein expressions are significantly higher in UCB vs.
AB naive CD4+ T-cells at baseline (day 0) and in day 4
iTreg. Further, TGF-β added to iTreg culture conditions has
no effect on BACH2 expression.

Knockdown of BACH2 in UCB CD4+ naive T-cells
results in decreased Foxp3 and CTLA-4 expression

To address the potential role for BACH2 transcriptional
regulation in UCB naive CD4+ T-cells, BACH2 shRNA
knockdown was performed. UCB naive CD4+ T-cells were
lentiviral transduced with GFP-tagged scrambled or
BACH2 shRNA virus and GFP+ CD4 T-cells were sorted
for analysis (Fig. 4a; Supplementary Figure S5a, b).
BACH2 shRNA transduction resulted in ~60% reduction in
BACH2 expression in UCB naive CD4+ T-cells compared
to scrambled shRNA (Fig. 4b) and western blot results
confirmed FACS analysis (Supplementary Figure S5c).
Expression of Foxp3 in day 4 iTreg differentiated from
UCB naive CD4+ T-cells transduced with BACH2 shRNA
dropped significantly, e.g., ~40% (scrambled; 81.7 ± 3.4 %
vs. BACH2; 45.7 ± 3.6 %, p < 0.001) (Fig. 4c). As a con-
sequence of BACH2 shRNA knockdown, levels of CTLA-4
protein expression in BACH2 transduced UCB CD4+ T-
cells was also noted to significantly decrease by twofold
(Fig. 4c). In addition, mRNA levels of Foxp3 and CTLA-4
dropped significantly (Supplementary Figure S5d). In
addition, suppressive activity was diminished after BACH2
knockdown (Fig. 4d). As shown in Fig. 4e, Foxp3 expres-
sion progressively increased in scrambled shRNA trans-
duced UCB naive CD4+ T-cells, whereas Foxp3 expression
in BACH2 shRNA transduced UCB naive CD4+ T-cells
remained significantly lower over a 3-day time period
(Fig. 4e). Interestingly, we did not see BACH2 effects in
AB-derived iTregs (Supplementary Figure S6). In
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summary, knockdown of BACH2 using shRNA in human
UCB naive CD4+ T-cells significantly reduces Foxp3 and
CTLA-4 expression in UCB iTreg.

Identification of putative transcriptional BACH2
binding sites

On the basis of the results of BACH2 shRNA knockdown in
UCB naive CD4+ T-cells demonstrating significant reduc-
tion in Foxp3 expression, additional studies were performed
to determine whether BACH2 could potentially bind to the
proximal region of the exon −1 promoter region of the
human Foxp3 promoter region. BACH2, AP-1, and NFAT1
consensus DNA binding sequences were compared with the
promoter region of human Foxp3 [27]. Sequence analysis of
the human Foxp3 promoter region confirmed known AP-1
binding sites, which were >75% similar to the BACH2
consensus binding sites (Fig. 5a). The proximal Foxp3 −1
exon region also contained putative NFAT1 binding
sites (Fig. 5a). Overall, this analysis identified sequences
containing BACH2 consensus DNA binding sites that
were located within the promoter region of human
Foxp3.

Cross-linking ChIP assay

On the basis of the observed higher expression of BACH2
in UCB naive CD4+ T-cells vs. AB, higher Foxp3
expression in day 4 UCB iTreg, and the presence of
BACH2 consensus binding sites in the human Foxp3 pro-
moter, studies were next conducted to determine whether
BACH2 binds to the human Foxp3 promoter in UCB CD4+

iTreg. AB and UCB naive CD4+ T-cells were differentiated
into iTreg as described above. iTreg were collected on day 4
and processed for ChIP assays. As shown in Fig. 5b,
binding of BACH2 to the Foxp3 promoter region was sig-
nificantly higher in UCB Foxp3+ iTreg vs. AB. These
results were confirmed using standard gel electrophoresis
(Fig. 5c).

Luciferase assay at the Foxp3 promoter region

As BACH2 binding was confirmed at the human Foxp3
promoter in UCB iTreg by cross-linked ChIP with for-
maldehyde DNA-protein linkage, studies were conducted to
determine whether BACH2 is transcriptionally active at the
Foxp3 promoter. Luciferase activity was measured using
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the human Foxp3 luciferase reporter (Luc) Jurkat recom-
binant cell line (BPS Bioscience, San Diego, CA). Jurkat
cells expressed BACH2 protein (Supplementary Fig-
ure S7a). BACH2 expression was significantly reduced after
transduction with BACH2 shRNA but not in scrambled
shRNA (Fig. 6a; Supplementary Figure S7b). As shown in
Fig. 6b, TCR stimulation increases luciferase expression in
these Foxp3 reporter cells. BACH2 shRNA treatment sig-
nificantly diminished luciferase expression compared to
scrambled shRNA-treated cells (Fig. 6b).

Discussion

On the basis of comparative FACS analyses, assessment of
iTreg suppressive function, ChIP of the human Foxp3
promoter, shRNA knockdown, and luciferase measure-
ments, the findings outlined in this report strongly support
BACH2 as a critical regulator of Foxp3 expression in iTreg
differentiated from UCB naive CD4+ T-cells. Increased
BACH2 expression in UCB naive CD4+ T-cells may serve
as a strong promoter of Foxp3 expression in UCB iTreg.
During iTreg generation in vitro using standard differ-
entiation conditions including TGFβ, we noted that low
levels of BACH2 in AB naive CD4+ T-cells were insuffi-
cient to upregulate Foxp3 and to stably sustain its expres-
sion during 21-day iTreg expansion.

As robust and sustained Foxp3 expression is required for
Treg lineage maintenance and suppressive function [28],
instability of Foxp3 in iTreg compared with tTreg [7] has to
date severely limited the clinical development of iTreg for
GVHD prophylaxis. It has been demonstrated that
instability of Foxp3 expression in iTreg limits the utility of
adoptively transferred iTreg as a source of cellular therapy
for the abrogation of GVHD [6]. However, the low

frequency of tTreg in human peripheral blood provides a
strong rationale for further study of the generation and
expansion of large numbers of stable Foxp3-expressing
iTreg for adoptive therapy use as GVHD prophylaxis, as
high numbers of Treg are needed to facilitate tolerance after
allogeneic stem cell transplantation. Our studies demon-
strated the ability to generate ~1–4 × 109 iTreg with a 21-
day expansion protocol from individual UCB units, which
would expectedly meet the needs of human clinical appli-
cation, despite the noted variance in iTreg cell yields
between different UCB units (data not shown).

We observed significantly upregulated expression of
CD25 and CTLA-4, two well-described molecules that
contribute to Treg function, on UCB Foxp3+ iTreg [29, 30].
Expression of other surface inhibitory and exhaustion
molecules including PD-1 [31], ICOS [32], LAG-3 [33],
TIM-3 [34], NRP-1 [35, 36], and TIGIT [37] did not differ
between AB and UCB Foxp3+ iTreg. However, enhanced
expression of OX-40 [38] and CD39 [39] on UCB iTreg,
both of which may also contribute to the enhanced sup-
pressive function of UCB iTreg was observed, and warrants
further investigation. Whether UCB iTreg maintain robust
Foxp3 expression, appropriate trafficking to inflammatory
sites, and suppressive function in inflammatory conditions
in vivo are also important factors to consider in future
studies. Of relevance to future in vivo studies, we observed
significantly higher sustained surface expression of CD62L
required for entry into lymph nodes [40], on UCB iTreg
during 21 day in vitro expansion. Although tTreg have been
shown in murine models and early human trials of GVHD
prophylaxis [1] to exert favorable suppressive effects, cau-
tion must be taken to draw firm conclusions regarding
efficacy of iTreg cell therapy without further understanding
of the in vivo stability of Foxp3 expression, as contextual
cues may influence what transcriptional regulatory proteins
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may be recruited to the Foxp3 complex [41], thereby con-
tributing to iTreg plasticity in vivo.

BACH2 was first characterized as an important tran-
scriptional regulator to control B-cell development [42].
Further, inhibition of BACH2 was shown to suppress IL-2
expression in UCB CD4+CD45RA+ T-cells [43]. Recently,
a human disorder termed ‘BACH2-related immunodefi-
ciency and autoimmunity’ (BRIDA), caused by hetero-
zygous mutations in BACH2, has been described [44]. In
addition, recent murine gene deletion studies revealed that
BACH2 is a critical transcription factor for TGF-β-induced
Foxp3+ regulatory T-cell function [14, 15]. Roychoudhuri
et al. [14] found that BACH2 regulates immune responses
in murine T-cell differentiation by repressing genes asso-
ciated with effector cell differentiation. Studies summarized
herein identify that BACH2 regulates human UCB iTreg
development via direct transcriptional activity at the Foxp3
promoter. The factors regulating BACH2 expression in
developing and mature CD4+ T-cells, as well as a better
understanding of the molecular mechanisms that establish a
Treg-specific transcriptional program, remain only partially

defined. Also, whether UCB naive CD4+ T-cells may have
a distinctive gene profile [45] underlying the observed
higher BACH2 expression compared to adult naive CD4+

T-cells remains to be determined. Nevertheless, our data
support the view that BACH2 is a critical transcription
factor that interacts with and regulates Foxp3, thereby
governing iTreg vs. effector T-cell differentiation and
function in vitro.

Foxp3 associates with a large number of transcription co-
factors [27] and is modified by histone acetylation [46] to
maintain Treg lineage and suppressive function. Our find-
ings reveal a significant loss of Foxp3 expression in
BACH2 shRNA transduced UCB naive CD4+ T-cells. To
determine further effects of reduced Foxp3 expression in
stimulated UCB CD4+ T-cells, expression levels of CTLA-
4 were examined in BACH2 shRNA transduced UCB CD4
+ T-cells. Our data showed a significant loss of CTLA-4
expression under conditions of reduced Foxp3 expression.
These findings are consistent with prior work supporting the
concept that CTLA-4 is associated with Treg transcriptional
signature [47]. It has been reported that Foxp3 regulates
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Fig. 4 BACH2 knockdown results in significantly reduced Foxp3 and
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lentiviral transduced CD4 T-cells after FACS purification. b BACH2
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(shaded) and BACH2 (open) shRNA treatment. Data presented are
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FACS analysis. Data are represented from three different experiments
(n= 7–8). d Suppression assay BACH2 knockdown UCB iTregs.
CFSE dilution measured at 3 days after stimulation. e Kinetic of Foxp3
expression in UCB iTreg treated with either scrambled or
BACH2 shRNA transduced UCB naive CD4+ T-cells. Data are from
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CTLA-4 via interaction with NFAT1 [27]. Our data
demonstrating a role of BACH2 in Foxp3 expression does
not exclude the possibility that BACH2 may also indirectly
affect Foxp3 expression through other interacting tran-
scription factors that also participate in T-cell fate
determination.

As the Foxp3 promoter is activated by IL-2 through
STAT5 [48], it would appear that UCB naive CD4+ T-cells
are primed for the expression of the Foxp3 gene, as pre-
vious studies have shown that STAT5 binds to de-
acetylated histones 4 for trans-activation [49]. As UCB

naive CD4+ T-cells have reduced NFAT1 protein expres-
sion [50] and hypo-acetylated histone 3 and 4 at the Foxp3
promoter [51], a reasonable hypothesis may be that these
cells have muted Th1 differentiation response and sustained
Foxp3 gene expression under primary stimulation condi-
tions (i.e., CD3 and CD28 co-stimulation) with high doses
of IL-2 [52].

BACH2 robust expression in UCB naive CD4+ T-cells
may comprise one mechanism underlying the altered
response of UCB naive CD4+ T-cells in in vitro iTreg
expansion culture compared with AB naive CD4+ T-cells.
These studies have elucidated a previously uncharacterized
role for BACH2 in early human adaptive immune respon-
ses. Taken together, differing BACH2 regulation comparing
UCB vs. AB naive CD4+ T-cells has important implications
for further elucidation of molecular mechanisms underlying
neonatal tolerance and normal human T-cell repertoire
development. These studies thus provide a basis for further
in-depth analyses of BACH2 in UCB naive CD4+ T-cell
differentiation, as well as rationale for consideration of
clinical development of UCB iTreg as potential adoptive
cellular therapy for GVHD prophylaxis.
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